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ABSTRACT 

For all models except R2, bias quickly becomes nearly level. The bias of R2 continues to decline as data 

slowly accumulate in joint distributions and overcome the prior (an initial Laplace correction to prevent 

zero probabilities). Variance is level for Intrinsic and CI, but continues to decline for R2, and less so for 

R1 and RCI, between Train Size values of 1000 and 5000. For all points with Train Size > 100, the 95% 

confidence intervals are less than 0.002. 

Thus, the large initial gap in loss between CI and R2 appears directly attributable to the size of 

R2’s parameter space, and the difficulty of making good estimates with sparse data. This difference 

between CI and R2 is pronounced even though objects in the data contain only three attributes. If the 

number of attributes on each object is increased, as shown in figure 5, the loss of R2 soars compared to 

other models, including CI, whose loss remains nearly constant. Even R1 and RCI show marked increases 

in loss, though to a much smaller extent than R2. The results for data produced by collective generation 

are qualitatively similar. 

Key words: decline, probabilities, attributable, pronounced., qualitatively.  

INTRODUCTION 

In choosing a representation, we must keep in mind the five issues: complexity, uncertainty, 

modularity, comprehensibility, and inference. The first two suggest a method that combines first-

order logic with probability. There are many such methods. One of them, SLPs, assumes that for 

a given consequent, only one rule can fire at a time. SLPs are thus not a natural fit when multiple 

rules can function simultaneously as sources of evidence for their common consequent. Another 

method, probabilistic relational models, lacks the modularity required for construction by many 

loosely-coordinated individuals. The various relational methods available today are mostly not as 

modular or comprehensible as, say, a collection of first-order rules.  

Further, most of them did not yet exist at the time we were creating this architecture. 

KBMC, on the other hand, fulfills all the desiderata. Horn clauses have the key feature of high 

modularity: a new rule can be input without knowing what other rules are already in the 

knowledge base. Horn rules are also very comprehensible: rules can be read as “if-then” 

statements, making them natural for reading and writing. The only apparent drawback to using 
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KBMC is its use of Horn clauses instead of full first-order logic. In their defense, however, Horn 

clauses are used in many expert system shells, and form the basis of the Prolog programming 

language. They Collective Knowledge Base Users Rules Facts Feedback  

REVIEW OF LITERATURE 

In current knowledge-sharing sites and knowledge management systems, questions are 

answered from an indexed repository of past answers, or routed to the appropriate experts. Thus 

the only questions that can be answered automatically are those that have been asked and 

answered in the past. In contrast, the architecture we propose here allows chaining between rules 

and facts provided by different experts, and thus automatically answering potentially a very large 

number of questions that were not answered before. This can greatly increase the utility of the 

system, decrease the cost of answering questions, and increase the rewards of contributing 

knowledge.  

The architecture answers the problems posed in the introduction:  

Quality:-  By employing feedback and machine learning, we are able to determine which rules 

are of high quality, and which are not. Further, since we are tracking the utility of knowledge 

provided by users, they are more inclined to provide good rules.  

Consistency:- By using a probabilistic framework, we are able to handle inconsistent 

knowledge.  

Relevance :- Since the knowledge base is being built by users, for users, we expect the rules to 

be on topics that the users find relevant and interesting. The credit assignment process rewards 

those contributors whose rules are used (and produce correct answers), which provides incentive 

to create rules that are relevant to users’ needs.  

Scalability:- For both training and query-answering, the most expensive portion of the 

computation is the probabilistic inference on the Bayesian network. However, this computation 

depends only on the size of the network, not of the entire knowledge base. The Bayesian network 

is constructed out of only the relevant knowledge, which we expect (and confirm empirically in 

the experimental section) will typically lead to relatively small networks even for very large 

knowledge bases.  

Motivation of contributors:- By tracking the utility of rules and assigning credit to those which 

are used to answer queries, we provide the means for motivating contributors (e.g. listing the top 

ten, paying in some real or virtual currency, etc.)  
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MATERIAL AND METHOD 

Squared loss as a function of training set size for all models. Data for figure 3a were produced 

using the collective generator, so it is not unexpected that CI rapidly converges to a relatively 

low loss. R2 continues to reduce its loss as Train Size increases. At Train Size=5000, none of the 

models achieve minimum error, corresponding to the CI model provided with perfect class 

information, but R2 continues to reduce loss at a steady rate.  

 
 

Figure 1: squared loss for (a) collective data generation, and (b) relational data 

generation 

For all points with TrainSize > 100, the 95% confidence intervals are less than 0.004 Figure 3b 

shows the same type of results for the relational data generator. Even though they do not match 

the data generator, CI and RCI outperform other models when TrainSize is small. 

R2 continues to have corresponding high loss, though it will eventually drop below CI 

and RCI as it declines to the optimal value of loss at high TrainSize. R1 performs similarly, 

dropping below CI at around TrainSize=3000. For TrainSize > 100, the 95% confidence intervals 

are less than 0.004. 

We obtained similar results with experiments on the yeast protein data. CI resulted in the 

lowest zero one loss and its loss was significantly different than the zero one loss of all other 

models. 
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Table 1: Yeast Protein Data Zero-One Loss Results 

 

What is responsible for the low error of CI models? We measured bias and variance for 

the probability estimates of each model to compare their decomposed loss as a function of Train 

Size. Figures 4a and b show the results for the relational generator. For the collective generator, 

the variance results were qualitatively similar and the bias varied only slightly across the range 

of Train Size. 

For all models except R2, bias quickly becomes nearly level. The bias of R2 continues to 

decline as data slowly accumulate in joint distributions and overcome the prior (an initial 

Laplace correction to prevent zero probabilities). Variance is level for Intrinsic and CI, but 

continues to decline for R2, and less so for R1 and RCI, between Train Size values of 1000 and 

5000. For all points with Train Size > 100, the 95% confidence intervals are less than 0.002. 

Thus, the large initial gap in loss between CI and R2 appears directly attributable to the 

size of R2’s parameter space, and the difficulty of making good estimates with sparse data. This 

difference between CI and R2 is pronounced even though objects in the data contain only three 

attributes. If the number of attributes on each object is increased, as shown in figure 5, the loss of 

R2 soars compared to other models, including CI, whose loss remains nearly constant. Even R1 

and RCI show marked increases in loss, though to a much smaller extent than R2. The results for 

data produced by collective generation are qualitatively similar. 

This growth in the number of attributes is modest compared to some of the most common 

applications of relational learning algorithms, such as classifying web pages, in which objects 

have hundreds or thousands of attributes (e.g., words on a web page). For these applications, the 

ability of CI to provide a built-in factoring of the feature space may be almost essential. 
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Figure 2 loss decomposition into (a) bias, and (b) variance, fr relational data generation. 

The negative effect of large parameter spaces on R2 and RCI is a plausible explanation for the 

results of our experiments with the yeast protein data. Both R2 and RCI perform worse than CI. 

 Strength of Probabilistic Dependence 

Our data generation procedures use two parameters P(A1) and P(C|A1) to determine the strength 

of probabilistic dependence between the attribute A1 and the class label C. The relative 

performance of models differs based on the strength of this dependence. Figure 6 depicts how the 

quantity loss(R2)–loss(CI) varies as a function of P(A1) and P(C|A1). 

The largest difference between the two models occurs when P(A1) is uniformly 

distributed and the dependence of A and C is weakest. That is, CI performs best, in relative 

terms, when few correlations exist other than autocorrelation of class labels. The relative 

advantage of CI disappears as more information is available to R2. However, if no attributes are 

useful then only CI would be able to attain non-random performance. 
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Relational autocorrelation refers to the correlation among the values of the same variable on 

several related objects. The widespread occurrence of autocorrelation is one of the strongest 

motivations for relational inference of any kind. Its effects have been noted and explored by 

several researchers in collective inference, including Macskassy & Provost, Taskar et al. , and 

Yang et al.  

Figure  shows the effect of increasing levels of autocorrelation on the relative performance  of 

different models.  

 

 

 

 

 

 

 

Figure 3 loss as a function of autocorrelation figure 3 loss as a function of percentage of 

data labeled 

All models we consider, except Intrinsic, are greatly aided by autocorrelation, though their 

relative ordering changes slightly. R1 is aided least by autocorrelation while R2 is aided most. 

These results reveal another advantage of CI. Even when autocorrelation is entirely absent, CI’s 

performance is equal to that of Intrinsic. CI can exploit autocorrelation when present, but is not 

significantly impaired by its absence. 

Proportion of Known Values 

The core of collective inference is that inferences about one object can inform inferences about 

another. This capability is particularly useful when some values are known with certainty. For 

example, predictions about the topic of a previously unvisited webpage may be aided by 

considering the known topics of previously visited pages. 

Figure 3 shows how varying the proportion of labeled data affects CI and RCI, and how 

their performance compares to an alternative inference scheme for these models (labeled 

default). Rather than conducting full collective inference, default models terminate inference 

after the first round of Gibbs sampling. These results indicate the advantage of collective 
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inference over non-collective, holding all other factors constant. As shown in figure 8, the 

relative advantage of collective inference is reduced as more of the data are labeled. That is, 

collective inference procedures become less and less necessary as the percentage of true labels 

increases. 

While only a few studies [1,9,16] have actively varied the percentage of known labels, 

the results above closely parallel those of Macskassy and Provost [9], who show that the relative 

advantage of an iterative inference procedure over a noniterative procedure reduces as the 

percentage of labeled data increases. They show that, in general, their collective inference 

procedure performs better when class skew is present or when few labels are known with 

certainty. 

We also evaluated this effect using the yeast protein data, obtaining the results shown in 

table1. For each of the ten-fold cross-validation partitions, we learned a CI model on the 90% 

training partition and applied the model to the entire dataset. During collective inference, we 

varied the proportion of the data that was labeled—the test partition was always unlabeled but 

the training partition was labeled at the following levels {1.0,0.55,0.11} to produce overall levels 

of {0.9,0.5,0.1}. Accuracy was measured on the unlabeled instances and averaged over the ten 

folds. Loss increases significantly when only 10% of the data are labeled, but there is no 

significant difference in performance between 50% and 90% labeled. 

 

Table 2: Yeast protein data results with. partial labeling 

 

CONCLUSIONS 

Our experiments with real and synthetic data indicate that the reduced error attributed to 

collective inference results primarily from a clever factoring of the space of statistical 

dependencies in relational data. Models that represent this factoring, when combined with 

algorithms for collective inference, can greatly reduce bias in data with strong autocorrelation 

with the minimum possible increase in variance. When autocorrelation is absent, the models 

have practically equivalent error to their non-relational counterparts. 
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